Retrospective Study

Mammographic correlation with molecular subtypes of breast carcinoma

Kundana Rayamajhi*, Richa Bansal and Bharat Aggarwal

Published: 14 February, 2023 | Volume 7 - Issue 1 | Pages: 001-005

Aim: To determine the correlation between mammographic features of breast cancer with molecular subtypes and to calculate the predictive value of these features. 
Materials and method: This is a retrospective study of breast cancer patients presenting between January 2017 and December 2021, who underwent mammography of the breast followed by true cut biopsy and immunohistochemical staining of the tissue sample. Breast carcinoma patients without preoperative mammograms, those unable to undergo histopathological and IHC examinations and h/o prior cancer treatment were excluded. On mammography, size, shape, margins, density, the presence or absence of suspicious calcifications and associated features were noted. 
Results: Irregular-shaped tumors with spiculated margins were likely to be luminal A/B subtypes of breast cancer. Tumors with a round or oval shape with circumscribed margins were highly suggestive of Triple negative breast cancer. Tumors with suspicious calcifications were likely to be HER2 enriched. 
Conclusion: Mammographic features such as irregular or round shape, circumscribed or noncircumscribed margins and suspicious calcifications are strongly correlated in predicting the molecular subtypes of breast cancer and thus may further expand the role of conventional breast imaging.

Read Full Article HTML DOI: 10.29328/journal.jro.1001045 Cite this Article Read Full Article PDF


  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210. Epub 2014 Oct 9. PMID: 25220842.
  2. Çelebi F, Pilancı KN, Ordu Ç, Ağacayak F, Alço G, İlgün S, Sarsenov D, Erdoğan Z, Özmen V. The role of ultrasonographic findings to predict molecular subtype, histologic grade, and hormone receptor status of breast cancer. Diagn Interv Radiol. 2015 Nov-Dec;21(6):448-53. doi: 10.5152/dir.2015.14515. PMID: 26359880; PMCID: PMC4622390.
  3. Yanagawa M, Ikemot K, Kawauchi S, Furuya T, Yamamoto S, Oka M, Oga A, Nagashima Y, Sasaki K. Luminal A and luminal B (HER2 negative) subtypes of breast cancer consist of a mixture of tumors with different genotype. BMC Res Notes. 2012 Jul 25;5:376. doi: 10.1186/1756-0500-5-376. PMID: 22830453; PMCID: PMC3413599.
  4. Huber KE, Carey LA, Wazer DE. Breast cancer molecular subtypes in patients with locally advanced disease: impact on prognosis, patterns of recurrence, and response to therapy. Semin Radiat Oncol. 2009 Oct;19(4):204-10. doi: 10.1016/j.semradonc.2009.05.004. PMID: 19732684.
  5. Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev. 2014 Feb;40(1):129-38. doi: 10.1016/j.ctrv.2013.06.006. Epub 2013 Jul 23. PMID: 23891266.
  6. Irshad A, Leddy R, Pisano E, Baker N, Lewis M, Ackerman S, Campbell A. Assessing the role of ultrasound in predicting the biological behavior of breast cancer. AJR Am J Roentgenol. 2013 Feb;200(2):284-90. doi: 10.2214/AJR.12.8781. PMID: 23345347.
  7. Blaichman J, Marcus JC, Alsaadi T, El-Khoury M, Meterissian S, Mesurolle B. Sonographic appearance of invasive ductal carcinoma of the breast according to histologic grade. AJR Am J Roentgenol. 2012 Sep;199(3):W402-8. doi: 10.2214/AJR.11.7374. PMID: 22915433.
  8. Reis-Filho JS, Simpson PT, Gale T, Lakhani SR. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract. 2005;201(11):713-25. doi: 10.1016/j.prp.2005.05.013. Epub 2005 Oct 3. PMID: 16325514.
  9. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ; Panel members. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011 Aug;22(8):1736-47. doi: 10.1093/annonc/mdr304. Epub 2011 Jun 27. PMID: 21709140; PMCID: PMC3144634.
  10. Anupama T, Prachi S, Smita M, Neelam W, Natasha G, Navneet K. Role of Sonography in predicting the hormone receptor status of breast cancer: A prospective study. J Diagn Med Sonogr. 2017; 1-12.
  11. Çelebi F, Pilancı KN, Ordu Ç, Ağacayak F, Alço G, İlgün S, Sarsenov D, Erdoğan Z, Özmen V. The role of ultrasonographic findings to predict molecular subtype, histologic grade, and hormone receptor status of breast cancer. Diagn Interv Radiol. 2015 Nov-Dec;21(6):448-53. doi: 10.5152/dir.2015.14515. PMID: 26359880; PMCID: PMC4622390.
  12. Ko ES, Lee BH, Kim HA, et al. Triple-negative breast cancer: Correlation between imaging and pathological findings. Eur Radiol. 2010;20:1111–1117
  13. Wang Y, Ikeda DM, Narasimhan B, et al. Estrogen receptor-negative invasive breast cancer: Imaging features of tumors with and without human epidermal growth factor receptor type 2 overexpression. 2008;246:367–375.
  14. Yang WT, Dryden M, Broglio K, Gilcrease M, Dawood S, Dempsey PJ, Valero V, Hortobagyi G, Atchley D, Arun B. Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women. Breast Cancer Res Treat. 2008 Oct;111(3):405-10. doi: 10.1007/s10549-007-9810-6. Epub 2007 Nov 17. PMID: 18026834.
  15. Zhang L, Li J, Xiao Y, Cui H, Du G, Wang Y, Li Z, Wu T, Li X, Tian J. Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision. Sci Rep. 2015 Jun 5;5:11085. doi: 10.1038/srep11085. PMID: 26046791; PMCID: PMC4457139.
  16. Seo BK, Pisano ED, Kuzimak CM, Koomen M, Pavic D, Lee Y, Cole EB, Lee J. Correlation of HER-2/neu overexpression with mammography and age distribution in primary breast carcinomas. Acad Radiol. 2006 Oct;13(10):1211-8. doi: 10.1016/j.acra.2006.06.015. PMID: 16979070.
  17. Sun SS, Zhang B, Zhao HM, Cao XC. Association between mammographic features and clinicopathological characteristics in invasive ductal carcinoma of breast cancer. Mol Clin Oncol. 2014 Jul;2(4):623-629. doi: 10.3892/mco.2014.297. Epub 2014 May 19. PMID: 24940507; PMCID: PMC4051570.
  18. Boisserie-Lacroix M, Hurtevent-Labrot G, Ferron S, Lippa N, Bonnefoi H, Mac Grogan G. Correlation between imaging and molecular classification of breast cancers. Diagn Interv Imaging. 2013 Nov;94(11):1069-80. doi: 10.1016/j.diii.2013.04.010. Epub 2013 Jul 15. PMID: 23867597.
  19. Cen D, Xu L, Li N, Chen Z, Wang L, Zhou S, Xu B, Liu CL, Liu Z, Luo T. BI-RADS 3-5 microcalcifications can preoperatively predict breast cancer HER2 and Luminal a molecular subtype. Oncotarget. 2017 Feb 21;8(8):13855-13862. doi: 10.18632/oncotarget.14655. PMID: 28099938; PMCID: PMC5355144.
  20. Patel TA, Puppala M, Ogunti RO, Ensor JE, He T, Shewale JB, Ankerst DP, Kaklamani VG, Rodriguez AA, Wong ST, Chang JC. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods. Cancer. 2017 Jan 1;123(1):114-121. doi: 10.1002/cncr.30245. Epub 2016 Aug 29. PMID: 27571243.
  21. Jiang L, Ma T, Moran MS, Kong X, Li X, Haffty BG, Yang Q. Mammographic features are associated with clinicopathological characteristics in invasive breast cancer. Anticancer Res. 2011 Jun;31(6):2327-34. PMID: 21737659.


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?