Abstract

Research Article

Effect of TAK242 on MCP-1 and TGF-β in COPD Rats

Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu and Jian Chen and Lijun Chen*

Published: 13 March, 2024 | Volume 8 - Issue 1 | Pages: 014-021

Objective: To investigate the mechanism of MCP-1 and TGF-β regulation by TAK242 in COPD rats. 
Methods: Thirty-six SD rats were randomly divided into normal, COPD control, and TAK242 groups. The normal group was freely fed, and the other groups used the method of fumigation plus lipopolysaccharide tracheal drip to establish an experimental animal model of COPD. After successful modeling, each experimental group received 0.9% NaCl solution and corresponding drugs by intraperitoneal injection for 7 d. After drug administration, lung function was examined; pathological changes in lung tissue were observed by light microscopy with hematoxylin-eosin staining; mRNA expression of MCP-1 and TGF-β was detected by q-PCR; and protein expression of MCP-1 and TGF-β in lung tissue was detected by Western blot and IHC, TGF-β protein expression in rat lung tissue. 
Results: Compared with the normal group, rats in the COPD control group showed signs and symptoms of COPD, decreased lung function, and increased expression of MCP-1 and TGF-β. The TAK242 group showed decreased expression of MCP-1 and TGF-β compared to the COPD control group. 
Conclusion: MCP-1, and TGF-β played a crucial role in the early stage of COPD fibrosis. TAK242 could ameliorate airway inflammation and inhibit the progression of COPD lung fibrosis in pre-existing rats in COPD model rats.

Read Full Article HTML DOI: 10.29328/journal.jro.1001060 Cite this Article Read Full Article PDF

Keywords:

Chronic obstructive pulmonary disease; Pulmonary fibrosis; TAK242; Animal model

References

  1. Barnes PJ. Small airway fibrosis in COPD. Int J Biochem Cell Biol. 2019 Nov;116:105598. doi: 10.1016/j.biocel.2019.105598. Epub 2019 Sep 6. PMID: 31499176.
  2. Rao W, Wang S, Duleba M, Niroula S, Goller K, Xie J, Mahalingam R, Neupane R, Liew AA, Vincent M, Okuda K, O'Neal WK, Boucher RC, Dickey BF, Wechsler ME, Ibrahim O, Engelhardt JF, Mertens TCJ, Wang W, Jyothula SSK, Crum CP, Karmouty-Quintana H, Parekh KR, Metersky ML, McKeon FD, Xian W. Regenerative Metaplastic Clones in COPD Lung Drive Inflammation and Fibrosis. Cell. 2020 May 14;181(4):848-864.e18. doi: 10.1016/j.cell.2020.03.047. Epub 2020 Apr 15. PMID: 32298651; PMCID: PMC7294989.
  3. Beghé B, Cerri S, Fabbri LM, Marchioni A. COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors. Int J Mol Sci. 2021 Aug 27;22(17):9292. doi: 10.3390/ijms22179292. PMID: 34502194; PMCID: PMC8430914.
  4. Savin IA, Zenkova MA, Sen'kova AV. Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci. 2022 Nov 29;23(23):14959. doi: 10.3390/ijms232314959. PMID: 36499287; PMCID: PMC9735580.
  5. Puukila S, Lawrence MD, De Pasquale CG, Bersten AD, Bihari S, McEvoy-May J, Nemec-Bakk A, Dixon DL. Monocyte chemotactic protein (MCP)-1 (CCL2) and its receptor (CCR2) are elevated in chronic heart failure facilitating lung monocyte infiltration and differentiation which may contribute to lung fibrosis. Cytokine. 2023 Jan;161:156060. doi: 10.1016/j.cyto.2022.156060. Epub 2022 Oct 8. PMID: 36219898.
  6. Zhang K, Phan SH. Cytokines and pulmonary fibrosis. Biol Signals. 1996 Jul-Aug;5(4):232-9. doi: 10.1159/000109195. PMID: 8891199.
  7. Pulito-Cueto V, Remuzgo-Martínez S, Genre F, Atienza-Mateo B, Mora-Cuesta VM, Iturbe-Fernández D, Lera-Gómez L, Sebastián Mora-Gil M, Prieto-Peña D, Portilla V, Blanco R, Corrales A, Ocejo-Vinyals JG, Gualillo O, Ferraz-Amaro I, Cifrián JM, López-Mejías R, González-Gay MA. Elevated VCAM-1, MCP-1 and ADMA serum levels related to pulmonary fibrosis of interstitial lung disease associated with rheumatoid arthritis. Front Mol Biosci. 2022 Dec 19;9:1056121. doi: 10.3389/fmolb.2022.1056121. PMID: 36601584; PMCID: PMC9806218.
  8. Chen H, Chen H, Liang J, Gu X, Zhou J, Xie C, Lv X, Wang R, Li Q, Mao Z, Sun H, Zuo G, Miao D, Jin J. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp Mol Med. 2020 Jan;52(1):130-151. doi: 10.1038/s12276-019-0371-7. Epub 2020 Jan 21. PMID: 31959867; PMCID: PMC7000795.
  9. Inui N, Sakai S, Kitagawa M. Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway. Int J Mol Sci. 2021 Jun 5;22(11):6107. doi: 10.3390/ijms22116107. PMID: 34198949; PMCID: PMC8201174.
  10. 10 Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP, Wang CM. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 2020 Nov 13;11(11):978. doi: 10.1038/s41419-020-03178-2. PMID: 33188176; PMCID: PMC7666141.
  11. Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM. Autophagy and inflammation in chronic respiratory disease. Autophagy. 2018;14(2):221-232. doi: 10.1080/15548627.2017.1389823. Epub 2018 Feb 8. PMID: 29130366; PMCID: PMC5902194.
  12. Cui H, Liu X, Zhang J, Zhang K, Yao D, Dong S, Feng S, Yang L, Li Y, Wang H, Huang J, Wang J. Rhodiola rosea Attenuates Cigarette Smoke and Lipopolysaccharide-Induced COPD in Rats via Inflammation Inhibition and Antioxidant and Antifibrosis Pathways. Evid Based Complement Alternat Med. 2021 Mar 2;2021:6103158. doi: 10.1155/2021/6103158. PMID: 33747104; PMCID: PMC7943302.
  13. Yang HZ, Wang JP, Mi S, Liu HZ, Cui B, Yan HM, Yan J, Li Z, Liu H, Hua F, Lu W, Hu ZW. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. Am J Pathol. 2012 Jan;180(1):275-92. doi: 10.1016/j.ajpath.2011.09.019. Epub 2011 Nov 7. PMID: 22062220.
  14. Liu S, Wu J, Chen P, Mohammed SAD, Zhang J, Liu S. TAK-242 Ameliorates Hepatic Fibrosis by Regulating the Liver-Gut Axis. Biomed Res Int. 2022 Aug 16;2022:4949148. doi: 10.1155/2022/4949148. PMID: 36017390; PMCID: PMC9398794.
  15. Liang GB, He ZH. Animal models of emphysema. Chin Med J (Engl). 2019 Oct 20;132(20):2465-2475. doi: 10.1097/CM9.0000000000000469. PMID: 31567388; PMCID: PMC6831071.
  16. Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: a methodological review. Tob Induc Dis. 2017 May 2;15:25. doi: 10.1186/s12971-017-0130-2. PMID: 28469539; PMCID: PMC5414171.
  17. Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). J Toxicol Environ Health B Crit Rev. 2023 Jul 4;26(5):275-305. doi: 10.1080/10937404.2023.2208886. Epub 2023 May 14. PMID: 37183431; PMCID: PMC10718174.
  18. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, Shrine N, Qiao D, Bartz et al; SpiroMeta Consortium; International COPD Genetics Consortium. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019 Mar;51(3):494-505. doi: 10.1038/s41588-018-0342-2. Epub 2019 Feb 25. PMID: 30804561; PMCID: PMC6546635.
  19. Fathimath Muneesa M, Shaikh SB, Jeena TM, Bhandary YP. Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. Int Immunopharmacol. 2021 Jul;96:107608. doi: 10.1016/j.intimp.2021.107608. Epub 2021 Apr 12. PMID: 33857801.
  20. Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells. 2021 Apr 14;10(4):897. doi: 10.3390/cells10040897. PMID: 33919784; PMCID: PMC8070705.
  21. Yi XM, Li M, Chen YD, Shu HB, Li S. Reciprocal regulation of IL-33 receptor-mediated inflammatory response and pulmonary fibrosis by TRAF6 and USP38. Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2116279119. doi: 10.1073/pnas.2116279119. Epub 2022 Mar 1. PMID: 35238669; PMCID: PMC8917384.
  22. Wang Y, Sang X, Shao R, Qin H, Chen X, Xue Z, Li L, Wang Y, Zhu Y, Chang Y, Gao X, Zhang B, Zhang H, Yang J. Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway. J Ethnopharmacol. 2022 Jan 30;283:114701. doi: 10.1016/j.jep.2021.114701. Epub 2021 Oct 1. PMID: 34606948; PMCID: PMC9715986.
  23. Lv Q, Wang J, Xu C, Huang X, Ruan Z, Dai Y. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways. Mol Med. 2020 May 24;26(1):49. doi: 10.1186/s10020-020-00173-3. PMID: 32448163; PMCID: PMC7245944.
  24. Zhao W, Wang L, Yang J, Chen X, Guo X, Xu K, Wang N, Zhao W, Xia C, Lian H, Rosas I, Yu G. Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration. Cell Commun Signal. 2023 Mar 13;21(1):56. doi: 10.1186/s12964-023-01040-4. PMID: 36915092; PMCID: PMC10009991.
  25. Dehghanbanadaki H, Forouzanfar K, Kakaei A, Zeidi S, Salehi N, Arjmand B, Razi F, Hashemi E. The role of CDH2 and MCP-1 mRNAs of blood extracellular vesicles in predicting early-stage diabetic nephropathy. PLoS One. 2022 Apr 1;17(4):e0265619. doi: 10.1371/journal.pone.0265619. PMID: 35363774; PMCID: PMC8975111.
  26. Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev. 2022 Mar;182:114045. doi: 10.1016/j.addr.2021.114045. Epub 2021 Nov 9. PMID: 34767865.
  27. Wang W, Zheng F, Zhang A. Arsenic-induced lung inflammation and fibrosis in a rat model: Contribution of the HMGB1/RAGE, PI3K/AKT, and TGF-β1/SMAD pathways. Toxicol Appl Pharmacol. 2021 Dec 1;432:115757. doi: 10.1016/j.taap.2021.115757. Epub 2021 Oct 19. PMID: 34673086.
  28. Qi W, Chen X, Polhill TS, Sumual S, Twigg S, Gilbert RE, Pollock CA. TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol. 2006 Mar;290(3):F703-9. doi: 10.1152/ajprenal.00254.2005. Epub 2005 Oct 4. PMID: 16204411.
  29. Cho ML, Yoon BY, Ju JH, Jung YO, Jhun JY, Park MK, Park SH, Cho CS, Kim HY. Expression of CCR2A, an isoform of MCP-1 receptor, is increased by MCP-1, CD40 ligand and TGF-beta in fibroblast like synoviocytes of patients with RA. Exp Mol Med. 2007 Aug 31;39(4):499-507. doi: 10.1038/emm.2007.55. PMID: 17934338.
  30. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011 Jan;79(1):34-41. doi: 10.1124/mol.110.068064. Epub 2010 Sep 29. PMID: 20881006.
  31. Liu W, Han X, Li Q, Sun L, Wang J. Iguratimod ameliorates bleomycin-induced pulmonary fibrosis by inhibiting the EMT process and NLRP3 inflammasome activation. Biomed Pharmacother. 2022 Sep;153:113460. doi: 10.1016/j.biopha.2022.113460. Epub 2022 Jul 25. PMID: 36076570.

Figures:

Similar Articles

  • Effect of TAK242 on MCP-1 and TGF-β in COPD Rats
    Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu and Jian Chen and Lijun Chen* Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu, Jian Chen and Lijun Chen*. Effect of TAK242 on MCP-1 and TGF-β in COPD Rats. . 2024 doi: 10.29328/journal.jro.1001060; 8: 014-021

Recently Viewed

Read More

Most Viewed

Read More

Help ?