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Abstract

Objective: To investigate the value of machine learning and traditional Cox regression models 
in predicting postoperative survivorship in patients with adenocarcinoma of the esophagogastric 
junction (AEG).

Methods: This study analyzed clinicopathological data from 203 patients. The Cox proportional 
risk model and four machine learning models were constructed and internally validated. ROC 
curves, calibration curves, and clinical decision curves (DCA) were generated. Model performance 
was assessed using the area under the curve (AUC), while calibration curves determined the it and 
clinical signi icance of the model.

Results: The AUC values of the 3-year survival in the validation set for the Cox regression model, 
extreme gradient boosting, random forest, support vector machine, and multilayer perceptron were 
0.870, 0.901, 0.791, 0.832, and 0.725, respectively. The AUC values of 5-year survival in the validation 
set for each model were 0.915, 0.916, 0.758, 0.905, and 0.737, respectively. The internal validation 
AUC values for the four machine learning models, extreme gradient boosting, random forest, support 
vector machine, and multilayer perceptron, were 0.818, 0.772, 0.804, and 0.745, respectively.

Conclusion: Compared with Cox regression models, machine learning models do not need 
to satisfy the assumption of equal proportionality or linear regression models, can include more 
in luencing variables, and have good prediction performance for 3-year and 5-year survival rates 
of AEG patients, among which, XGBoost models are the most stable and have signi icantly better 
prediction performance than other machine learning methods and are practical and reliable.

Background
Among gastrointestinal tumors, Esophagogastric Junction 

(EGJ) tumors have received more attention due to their 
special anatomical location. The clinical incidence of AEG 
has been on the rise in various countries [1-3], including 
China, Japan, and other Asian countries [4]. The features 
of AEG are comparable to those of gastric and esophageal 
cancers, but are different in that; its lymph node metastasis 
can reach up to the mediastinum and down to the abdominal 
cavity, and the location of the tumor is at the esophagogastric 
junction, which complicates surgery. Due to the different 
clinicopathological stages and treatment plans, there are 
marked variations in the prognosis of AEG patients.
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In cohort studies, the Cox proportional hazards regression 
model (Cox-PH) is commonly used to identify risk factors and 
construct predictive models using survival data [5]. The Cox-
PH can de ine the importance of variables based on hazard 
ratios, which have intuitive and explanatory characteristics. 
However, Cox-PH is limited by assumptions such as equal 
proportional risk and linearity, which affect the predictive 
effects of the model if they are not satis ied. In addition, it is 
challenging to include variables with nonlinear and complex 
relationships in Cox-PH [6]. Machine learning (ML) is a subset 
of Arti icial Intelligence (AI) that involves the development 
of an algorithm by learning processed data and information, 
through which the machine learns how to make decisions. 
In simple terms, ML refers to computer algorithms that are 
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automatically improved through experience [7], including 
extreme gradient boosting (XGBoost), Random Forest (RF), 
support vector machines (SVM), and Multi-layer Perceptron 
(MLP) among others. These algorithms are increasingly being 
used in prognostic studies of lung cancer, breast cancer, liver 
cancer, gastrointestinal cancer, and other malignant tumors 
[8-12]. Currently, it is not clear which of the traditional Cox-
PH models and ML models has better or poor prognostic 
prediction performance for AEG. Therefore, we constructed 
a Cox-PH model and an ML model to compare the predictive 
ef icacy of the two models for survival outcomes in AEG 
patients.

Materials and methods
Data collection

Two hundred and seventy-seven AEG patients admitted 
at the First Af iliated Hospital of Bengbu Medical College 
from 09, 2015 to 10, 2020 were selected. Inclusion criteria 
were: meet the World Health Organization criteria for the 
de inition of AEG (tumor center located within 5 cm above 
and below the EGJ, and the tumor itself must span or directly 
contact the EGJ, pathologically adenocarcinoma [13]). The 
exclusion criteria were: i. Patients who did not meet the WHO 
de inition of AEG; ii. Patients with incomplete clinical data; 
iii. Patients with combined severe cardiopulmonary disease; 
iv. Patients with postoperative lost visits; v. Patients who 
had not been surgically treated and vi. Those with unknown 
causes of death. After exclusion, 203 cases were inally 
included for analysis. A 5-year follow-up was conducted by 
telephone up to 04/2022.

Data processing

Relevant literature was reviewed to identify the factors 
that may affect AEG prognosis. A total of 19 factors were 
identi ied, including the patient’s preoperative gender, 
age, Borrmann staging, degree of differentiation, depth of 
in iltration (T stage), number of lymph node metastases (N 
stage), pathological TNM stage, maximum tumor diameter, 
postoperative chemotherapy, ibrinogen (Fibr), D-dimer 
(D-dimer), surgical approach, postoperative hospitalization 
duration, nutritional index (PNI), neutrophil count (NEU) to 
lymphocyte count (LYM) ratio (NLR), white ball ratio (WBR), 
serum carcinoembryonic antigen (CEA), alpha-fetoprotein 
(AFP), and glycoconjugate antigen 199 (CA199). The 11 
continuous variables including age (y), tumor size (cm), 
Fibr (g/L), D-dimer (mg/L), PNI, postoperative hospital stay 
(d), NLR, WRB, CEA (ng/mL), AFP (ng/mL), and CA199 (IU/
mL) had too many values before analysis, which may easily 
cause model over itting. Therefore, to achieve the required 
parameters, the X tile 3.6.1 software (developed by Yale 
University) [14] was used to obtain the best-truncated 
values for these 11 continuous variables. The 19 prognostic 
associated factors were quanti ied and transformed 
for analysis using SPSS 26.0, R4.2.2, Rstudio2022, and 
python3.11.0.

Partitioning of the training and validation sets

Survival curves were plotted using the Kaplan-Meier 
method of survival analysis (Figure 1) to determine whether 
the variables met the proportional risk hypothesis and to 
estimate the survival rate of AEG under different in luencing 
factors, using the Log-rank test for statistically signi icant 
differences between groups (Table 1). Under the condition 
that the variables met the proportional risk hypothesis test, 
the variables were subjected to one-way Cox regression 
analysis, and the p < 0.05 variables that were statistically 
signi icant in the one-way analysis were analyzed and 
included as covariates in the multi-way Cox regression, and 
the variables that were statistically signi icant (p < 0.05) 
in the multi-way analysis were obtained (Table 2), and the 
data of 203 patients were analyzed based on the one-way 
Cox regression analysis (p < 0.05) data were divided into 
153 cases in the training set and 50 cases in the validation 
set using the random number table method in a ratio of 3:1. 
The chi-square test (χ²) was used to compare categorical 
variables between the training and validation sets, and 
continuous variables were analyzed statistically descriptive 
using X ± S (Table 3).

Construction of models 

Cox-PH model: The variables with statistically signi icant 
Cox multifactor analysis in the training set were included as 
independent prognostic factors in the construction of the 
Cox-PH model. Risk Ratio (HR) and 95% Con idence Interval 
(CI) were calculated by stepwise regression method and 
displayed in the form of a Nomogram. Based on the column 
line graph (Figure 2), the sum of the scores in the training 
and validation sets was calculated to obtain the total score, 
and the ROC curves, calibration curves, and clinical decision 
curves (DCA) for the training and validation sets at 3 and 
5 years were plotted according to the column line graph 
corresponding to survival rates (Figures 3-5).

Construction of the ML model: Data from the training 
set of 153 cases were used for modeling, and 13 variables 
(p < 0.05) were used as input in this study based on Cox’s 
one-way analysis of variance. The optimal hyperparameters 
of XGBoost, RF, SVM, and MLP models were determined in 
the training set using a grid search method, and the default 
parameters were used for logistic regression. The model was 
also trained and internally validated using 5-fold resampling 
validation to obtain the best parameters. Model parameters 
were: XGBoost model: the optimization objective function 
uses binary and logistic regression the learning rate was set 
to 0.3, the maximum tree depth was set to 8, the minimum 
bifurcation weight sum was set to 4, and the L2 regularization 
coef icient was set to 1. The RF model: the metric uses gini, the 
minimum bifurcation purity gain is set to 0.0, and the number 
of trees is set to 100. In the SVM model: the regularization 
factor was set to 1.0, the kernel type was set to rbf, and the 
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Figure 1: A-S Kaplan-Meier survival curves for the 19 variables, including sex, age, Borrmann staging, degree of differentiation, depth of in iltration 
(T stage), number of lymph node metastases (N stage), pathological TNM stage, maximum tumor diameter, postoperative chemotherapy, Fibr, 
D-dimer, surgical approach, postoperative hospital stay, PNI, NLR, WBR, CEA, AFP, and CA19. Among them, sex, postoperative hospital stay, and 
NLR did not meet the assumption of equal proportions. 
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convergence metric was set to 0.1. The MLP model: the nodes 
of the input layer, hidden layer 1, hidden layer 2, and output 
layer were set to 13, 20, 10, and 1, respectively. Each layer 
was operated using the relu activation function and random 
initialization. The number of training sessions was 20. The 
3- and 5-year AUC values for each model in the training set 
were calculated after several training sessions and validated 
in the validation set. To assess the predictive performance 
of the four ML models, survival prediction was performed 
for all samples. After randomly establishing the independent 
training and validation sets at a ratio of 7:3, the training 
set was subjected to cross-validation for hyperparameter 
tuning to fully utilize the data in the training set and avoid 
data leakage in the test set. Validation was performed using 
the validation set, and the AUC value for each model in the 
training and test sets was determined. The AUC performance 
of each model in the training and test sets was calculated.

Statistical methods

Continuous variables were selected using X-tile 3.6.1 for 
the best-truncated values. Data were analyzed using the SPSS 
26.0 software. Comparison of mean values between groups 
was performed using the t-test, χ2 or exact probability 
analysis for measurement data, Kaplan-Meier method to 
count the survival rate of each group, and log-rank method to 
compare differences between groups. p ≤ 0.05 was set as the 
threshold for signi icance. Construction of the cox regression 
model, machine learning model, graph drawing, and Program 
development were performed using R software version 4.2.2 
(R Foundation for Statistical Computing, Vienna, Austria, 
http:/www.Rproject.org/), Rstudio (2022, PBC, Boston, MA, 
http:/www. rstudio.com/) and python 3.11.0.

Results
General patient characteristics

A total of 203 AEG patients (166 males and 37 females, 
with a male-to-female ratio of 4.48:1 and a mean age of 67.9 
years (44 years - 83 years) with > 60 years accounting for 
82.84%) were enrolled in this study. Eleven continuous 
variables, including age (64 y), tumor size (3.5 cm), Fibr (3.3 
g/L), D-dimer (0.28 mg/L), PNI (50.6, 53.5), postoperative 
hospital stay (10 d), NLR (3.6), WRB (1.4,1.9), CEA (0.82 
ng/mL), AFP (1.11 ng/mL), and CA199 (4.5 IU/mL) were 
selected by X-tile for the best cut-off values. Grouping results 
are shown in Table 1.

Predictive effi  cacy of the Cox-PH model

The Kaplan-Meier method was used to plot the survival 
curves for 19 variables (Figure 1). According to survival 
curves, among which gender, postoperative hospital stay and 
NLR did not meet the assumption of equal proportions, Log-
rank test showed that 15 variables, including age (p = 0.044), 
Borrmann staging (p = 0.003), degree of differentiation 
(p = 0.000), depth of in iltration (p = 0.001), number of 

Table 1: Log-rank test.

Variable Number Mean survival time 
(months) χ² p - value

Gender 0.414 0.52
Female 37 52.855 ± 6.040

Male 166 58.261 ± 2.649
Age 4.048 0.044 *

≤ 64y 60 64.034 ± 4.073
> 64y 143 54.188 ± 2.946

Borrmann 8.567 0.003 *
I+II 173 59.462 ± 2.517

III+IV 30 41.859 ± 6.705
Grade 18.281 0 *
I+I-II 20 71.723 ± 5.106

II+II-III 134 59.988 ± 2.836
III 49 41.370 ± 5.078
pT 10.694 0.001 *

T1+T2 47 72.334 ± 3.849
T3+T4 156 52.633 ± 2.839

pN 26.475 0 *
N0+N1 125 66.414 ± 2.713
N2+N3 78 41.919 ± 3.947
pTNM 19.626 0 *

I+II 94 68.581 ± 2.983
III+IV 109 47.004 ± 3.414

Tumor size 11.284 0.001 *
< 3.5 cm 71 69.329 ± 3.482
≥ 3.5 cm 132 50.410 ± 3.064

chemotherapy 19.133 0 *
yes 90 68.930 ± 3.32
no 113 47.436 ± 3.170

Fibr 13.163 0 *
< 3.3 g/L 102 66.364 ± 3.131
≥ 3.3 g/L 101 47.963 ± 3.473
D-dimer 12.6 0 *

≤ 0.28 mg/L 62 70.271 ± 3.445
< 0.28 mg/L 141 51.170 ± 3.028

Operation mode 12.778 0 *
Proximal gastrectomy 129 63.639 ± 2.837

Total gastrectomy 74 45.554 ± 4.194
Postoperative hospital 

stay 0.11 0.741

≤ 10 d 36 59.918 ± 6.313
> 10 d 167 56.544 ± 2.596

PNI 8.233 0.016 *
< 50.6 112 59.526 ± 3.335

≥ 50.6, ≤ 53.5 43 44.156 ± 4.966
> 53.5 47 64.169 ± 4.326
NLR 0.001 0.975
≤ 3.6 168 56.984 ± 2.598
> 3.6 35 55.507 ± 6.257
WBR 0.155 0.925
< 1.4 88 57.330 ± 3.780

≥ 1.4, < 1.9 97 56.135 ± 3.408
≥ 1.9 18 58.876 ± 7.839
CEA 34.647 0 *

≤ 0.82 ng/mL 54 83.681 ± 1.993
> 0.82 ng/mL 149 47.518 ± 2.817

AFP 34.871 0.005 *
≤ 1.11 ng/mL 58 79.718 ± 2.777
> 1.11 ng/mL 145 47.807 ± 2.855

CA199 21.836 0 *
≤ 4.5I U/mL 54 75.832 ± 3.561
> 4.5I U/mL 149 50.319 ± 2.827

*: Log-rank test results for variables with p - values ≤ 0.05.
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Table 2: Cox univariate and multifactor analysis.
Univariate analysis Multivariate analysis

HR(95%CI) coef p - value HR(95% CI) coef p - value
Gender 0.845(0.505 - 1.414)  - 0.169 0.52
Female

Male
Age 1.639(1.008 - 2.665) 0.494 0.046 * 1.043(0.608 - 1.787) 0.042 0.879

≤ 64 y
> 64 y

Borrmann 2.090(1.261 - 3.463) 0.737 0.004 * 2.156(1.211 - 3.838) 0.768 0.009 **
I+II

III+IV
Grade 0 * 0.216
I+I - II

II+II - III 2.048(0.820 - 5.114) 0.717 0.125 1.362(0.522 - 3.552) 0.309 0.528
III 4.447(1.730 - 11.428) 1.492 0.002 1.977(0.725 - 5.393) 0.682 0.183
pT 2.647(1.443 - 4.855) 0.973 0.002 *

T1+T2
T3+T4

pN 2.808(1.862 - 4.233) 1.032 0 *
N0+N1
N2+N3
pTNM 2.605(1.678 - 4.044) 0.957 0 * 1.991(1.249 - 3.175) 0.689 0.004 **

I+II
III+IV

Tumor size 2.204(1.373 - 3.536) 0.79 0.001 * 1.852(1.097 - 3.129) 0.616 0.021 **
< 3.5 cm
≥ 3.5 cm

chemotherapy 2.657(1.686 - 4.189) 0.977 0 * 3.014(1.791 - 5.07) 1.103 0 **
yes
no

Fibr 2.138(1.404 - 3.256) 0.76 0 * 1.007(0.626 - 1.618) 0.007 0.978
< 3.3 g/L
≥ 3.3 g/L
D - dimer 2.430(1.465 - 4.032) 0.888 0.001 * 1.549(0.887 - 2.703) 0.437 0.124

≤ 0.28 mg/L
> 0.28 mg/L

Operation mode 2.091(1.383 - 3.163) 0.738 0 * 1.607(1.016 - 2.541) 0.474 0.043 *
Proximal gastrectomy

Total gastrectomy
Postoperative hospital stay 1.104(0.614 - 1.987) 0.099 0.741

≤ 10 d
> 10 d

PNI 0.019 *
< 50.6 0.069

≥ 50.6 ,≤ 53.5 1.759(1.093 - 2.830) 0.02 1.877(1.099 - 3.204) 0.629 0.021
> 53.5 0.817(0.478 - 1.395) 0.458 1.298(0.709 - 2.378) 0.261 0.398
NLR 1.009(0.588 - 1.730) 0.975
≤ 3.6
> 3.6
WBR 0.973(0.704 - 1.345) 0.87
< 1.4

≥ 1.4, < 1.9
≥ 1.9
CEA 8.128(3.546 - 18.632) 0 * 3.581(1.523 - 8.421) 1.276 0.003 **

≤ 0.82 ng/mL
>0.82ng/mL

AFP 7.356(3.393 - 15.945) 0 * 3.327(1.460 - 7.586) 1.202 0.004 **
≤1.11ng/mL
>1.11ng/mL

CA199 4.482(2.250 - 8.929) 0 * 1.608(0.777 - 3.331) 0.475 0.201
≤4.5IU/mL
>4.5IU/mL

*: Variables with a p - value ≤ 0.05 in the results of Cox univariate analysis. **: Variables with p - values ≤ 0.05 in the results of Cox multivariate analysis.
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lymph node metastases (p = 0.000), pathological TNM 
stage (p = 0.000), maximum tumor diameter (p = 0.001), 
postoperative chemotherapy (p = 0.000), Fibr (p = 0.000), 
D-dimer (p = 0.000), surgical approach (p = 0.000), PNI (p 
= 0.016), CEA (p = 0.000), AFP (p = 0.005), and CA199 (p 
=0.000) were signi icant (p < 0.05) (Table 1). Excluding the 
depth of in iltration and the number of lymphatic metastases, 
the 15 variables with p < 0.05 in univariate analysis were 
subjected to Cox multivariate analysis to obtain 7 signi icant 
variables (p < 0.05), which were: Borrmann staging (p = 
0.009), pathological TNM stage (p = 0.004), maximum tumor 
diameter (p = 0.021), postoperative chemotherapy (p = 
0.000), surgical approach (p = 0.043), CEA (p = 0.003), and 
AFP (p = 0.004) (Table 2). The data were divided into training 
and validation groups based on the above seven variables, 
and the groups were compared using the Log-rank test. p - 
values for all variables between groups were greater than 
0.05, and the grouping effect was good (Table 3). The Cox 
regression model predicted the 3- and 5-year AUCs for the 
training set, which were 0.920 and 0.944, respectively. The 
model was validated using the validation set which showed 
3- and 5-year AUCs of 0.870 and 0.915, respectively. Clinical 
decision curves (DCA) for the training and validation sets of 
the Cox regression model (Figure 5) suggest that the decision 
curves lie above the None and All lines with the threshold of 
the model set in the 10% - 90% threshold range. Therefore, 
the model has a high clinical utility. The calibration curves 
suggest that the predicted probabilities of the Cox regression 
model are in good agreement with actual observed values.

Predictive eff ectiveness of the machine learning model 

The AUC values for the 3-year predictive performance 
of the four machine learning models based on random 
independent division of the training set were; XGBoost 
(AUC = 0.913), RF (AUC = 0.997), SVM (AUC = 0.954), and 
MLP (AUC = 0.701). The AUC values for 5-year prediction 
were XGBoost (AUC = 0.922), RF (AUC = 0.999), SVM (AUC = 
0.953), and MLP (AUC = 0.784). The validation set was used 
to validate the model, and the predicted AUC values for 3 
years were XGBoost (AUC = 0.901), RF (AUC = 0.791), SVM 
(AUC = 0.832), and MLP (AUC = 0.725). The predicted AUC 
values for 5 years were XGBoost (AUC = 0.916), RF (AUC = 
0.758), SVM (AUC = 0.905), and MLP (AUC = 0.737) (Table 
4). The four ML models divided the training set based on 
all patient data independently and predicted the survival 
rate of the training set with the following results. XGBoost 
(AUC = 0.900), RF (AUC = 0.999), SVM (AUC = 0.928), and 
MLP (AUC = 0.781); the validation set was validated against 
the models, and survival outcomes were: XGBoost (AUC = 
0.818), RF (AUC = 0.772), SVM (AUC = 0.804), MLP (AUC = 
0.745) (Table 5). By plotting the clinical decision curves 
predicted by the four model validation sets (Figure 6), the 
best cutoff values of the models in ROC analysis for the four 
ML model validation sets were XGBoost (cutoff = 38.5%), RF 
(cutoff = 50.7%), MLP (cutoff = 46.1%), and SVM (cutoff = 

Table 3: The variables with p < 0.05 in the results of Cox univariate analysis were 
divided into training and validation sets.

Training Set Validation Set

n = 153 n = 50

variables Mean ± SD /N(%) Mean ± SD /N(%) p - value

Survival(month) 45.742 ± 2.209 43.7992 ± 3.876 2.496

Age

≤ 64 46 (30.1%) 14 (28%) 0.921

> 64 y 107 (69.9%) 36 (72%)  

Borrmann

I+II 128 (83.7%) 45 (90%) 0.386

III+IV 25 (16.3%) 5 (10%)  

pT

T1+T2 33 (21.6%) 14 (28%) 0.458

T3+T4 120 (78.4%) 36 (72%)  

pN

N0+N1 95 (62.1%) 30 (60%) 0.923

N2+N3 58 (37.9%) 20 (40%)  

pTNM

I+II 71 (46.4%) 23 (46%) 1

III+IV 82 (53.6%) 27 (54%)  

Tumor size

< 3.5 cm 52 (34%) 19 (38%) 0.73

≥ 3.5 cm 101 (66%) 31 (62%)  

chemotherapy

yes 69 (45.1%) 21 (42%) 0.827

no 84 (54.9%) 29 (58%)  

Fibr

< 3.3 g/L 80 (52.3%) 22 (44%) 0.393

≥ 3.3 g/L 73 (47.7%) 28 (56%)  

D-dimer

≤ 0.28 mg/L 49 (32%) 13 (26%) 0.531

> 0.28 mg/L 104 (68%) 37 (74%)  

Operation mode

Proximal gastrectomy 99 (64.7%) 30 (60%) 0.666

Total gastrectomy 54 (35.3%) 20 (40%)  

CEA

≤ 0.82 ng/mL 38 (24.8%) 16 (32%) 0.417

> 0.82 ng/mL 115 (75.2%) 34 (68%)  

AFP

≤ 1.11 ng/mL 47 (30.7%) 11 (22%) 0.315

> 1.11 ng/mL 106 (69.3%) 39 (78%)  

CA199

≤ 4.5I U/mL 40 (26.1%) 14 (28%) 0.941

> 4.5I U/mL 113 (73.9%) 36 (72%)  

Grade

I+I-II 15 (9.8%) 5 (10%) 1

II+II-III 101 (66%) 33 (66%)  

III 37 (24.2%) 12 (24%)  

PNI

< 50.6 89 (58.2%) 24 (48%) 0.444

≥ 50.6, ≤ 53.5 31 (20.3%) 12 (24%)  

> 53.5 33 (21.6%) 14 (28%)  
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46.0%). At the threshold, the decision curves of the XGBoost 
and SVM models were located above the None and All lines, 
while the decision curves of MLP and RF models were not 
or not completely above the None and All lines. Therefore, 
the XGBoost and SVM models showed good clinical utility. 
The AUC score forest plots, calibration curves (Figures 7,8),
and clinical decision curves predicted by the four ML 

models were combined. The stability of the XGBoost model 
was found to be better; the SVM prediction ef icacy was 
second; the predictive probability of the RF model was 
less consistent with the actual observed values and may be 
over itted, i.e., excellent performance in the training set but 
poor performance in the validation set [15]. The predicted 
probability and actual observed values of the MLPL model 
were not satisfactory.

Discussion
Esophagogastric junction (AEG) is located at the junction 

of stomach and esophagus and its clinical and pathological 
characteristics are different from those of gastric and 
esophageal cancers. The early diagnosis rate is low, and 
most of them have lymph node metastasis at the time of 
diagnosis [16,17]. The overall prognosis of AEG is poor due 
to its special anatomical location, compared with that of 

Figure 2: Training set variables that were signi icant in Cox multifactor 
analysis (Borrmann staging, pathological TNM stage, maximum tumor 
diameter, postoperative chemotherapy, surgical approach, CEA, AFP) were 
included as independent prognostic factors in the construction of the Cox-PH 
model. The risk ratio (Hazard Ratio, HR) and 95% Con idence Interval (CI) 
were calculated by stepwise regression method and displayed as a columnar 
line graph (Nomogram).

Figure 3: ROC curves of the Cox regression model for predicting 3- and 
5-year survival outcomes in the training and validation sets. The AUCs of the 
Cox regression model in predicting 3- and 5-year survival outcomes in the 
training set were 0.920 and 0.944, respectively. The model was validated 
using the validation set, which revealed 3- and 5-year AUCs of 0.870 and 0.915, 
respectively.

Figure 4: Calibration curves of the Cox regression model for predicting the 
3- and 5-year survival outcomes in training and validation sets. The predicted 
probabilities of the Cox regression model are in good agreement with actual 
observed values. Training set: sample interval of 20. Validation set: sample 
interval of 10. n: Number of samples; B: Number of resampling.

Figure 5: Clinical decision curves (DCA) of the training and validation sets as 
predicted by the Cox regression model. With the threshold of the model set in 
the range of 10% - 90%, the decision curve lies above the None line and All line, 
thus, the model is clinically useful.
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traditional distal gastric cancer. Studies have shown that 
the average surgical cure rate is about 80%, and the 5-year 
survival rate after radical surgery is only about 30% [18,19], 
and Siewert, et al. [20] reported that the 5-year survival rate 
after radical surgery for pancreatic cancer is 40%, and the 
10-year survival rate is 20%. Marc Ychou, et al. [21] reported 
an overall 5-year survival rate of 38% after AEG in 113 cases. 
This study showed that the 3-year survival rate after AEG 
was 43.8%, the 5-year survival rate was 37.0%, and its 5-year 
survival rate was slightly lower than the 5-year survival rate 

of pancreatic cancer reported by Siewert, et al. and the 5-year 
survival rate of AEG reported by Marc Ychou, et al. Therefore, 
this study provided a new reference for predicting the 
survival rate after AEG.

Accurate prediction of surgical prognosis is important for 
informing subsequent treatment decisions of AEG patients. 
Currently, prognostic prediction of postoperative tumors 
is majorly based on logistic regression and Cox regression 
models [22,23]. The logistic regression model lacks survival 
time and, in terms of survival prediction, is inferior to the Cox 
regression model. In this study, the Cox-PH model was used 
to model and predict the survival rate of AEG, which showed 
better predictive outcomes. Construction of the Cox-PH 
model should satisfy the assumption of equal proportionality, 
therefore, some important prognostic factors should be 
discarded when constructing this model. The Cox-PH model is 

Table 4: Comparison of 3-year and 5-year prediction performance of various machine learning models in training and validation sets.
Training Set Validation Set

 Model AUC Accuracy Sensitivity Speci icity AUC Accuracy Sensitivity Speci icity
XGBoost

3 y 0.913 0.81 0.852 0.795 0.901 0.772 0.9 0.71
5 y 0.922 0.845 0.848 0.855 0.916 0.872 0.957 0.853
RF
3 y 0.997 0.965 1 0.944 0.791 0.672 0.667 0.8
5 y 0.999 0.979 1 0.963 0.758 0.623 1 0.455

SVM
3 y 0.954 0.873 0.944 0.841 0.832 0.801 0.78 0.61
5 y 0.953 0.894 0.984 0.838 0.905 0.821 0.926 0.588

MLP
3 y 0.501 0.606 0.255 0.813 0.425 0.541 0.348 0.684
5 y 0.784 0.711 0.763 0.699 0.737 0.656 0.9 0.548

XGBoost: eXtreme Gradient Boosting; RF: Random Forests; SVM: Support Vector machines; MLP: Multi-layer Perceptron

Table 5: Analysis of the predictive performance of each model in the training and validation sets.
Training Set Validation Set

Model AUC Cutoff Accuracy Sensitivity Speci icity AUC Cutoff Accuracy Sensitivity Speci icity
XGBoost 0.9 0.453 0.812 0.883 0.76 0.818 0.385 0.727 0.85 0.764

RF 0.999 0.503 0.977 1 0.959 0.772 0.507 0.689 0.791 0.755
MLP 0.781 0.459 0.721 0.705 0.743 0.745 0.461 0.658 0.818 0.709
SVM 0.928 0.464 0.85 0.865 0.848 0.804 0.46 0.733 0.828 0.755

Figure 6: Clinical decision curves (DCA) for predictions of the four ML models. 
Optimal cutoff values of the four models in ROC analysis of the validation set 
were XGBoost (cutoff = 38.5%), RF (cutoff = 50.7%), MLP (cutoff = 46.1%), and 
SVM (cutoff = 46.0%), and at this threshold, the decision curves of XGBoost and 
SVM models lie above the None and All lines, while the decision curves of the 
MLP and RF models did not or did not completely lie above the None and All 
lines. Therefore, the XGBoost and SVM models have a clinical utility.

Figure 7: Survival prediction ROC curves of the four ML models in the training 
and validation sets. In the training set, the predictive performance of survival 
outcomes for each independent model was: XGBoost (AUC = 0.900), RF (AUC 
= 0.999), SVM (AUC = 0.928), and MLP (AUC = 0.781) while for the validation 
set, the predictive performance was: XGBoost (AUC = 0.818), RF (AUC = 0.772), 
SVM (AUC = 0.804), and MLP (AUC = 0.745).
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a linear regression, and its predictive outcomes should satisfy 
the linear regression equation, which cannot capture the 
interactions between features. Machine learning techniques 
can better capture the complex association between features 
[24], thereby improving the model’s accuracy. Previously, 
scholars [25] used arti icial neural network (ANN) method 
to construct a machine learning model for predicting the 
prognosis of gastric cancer patients based on data of gastric 
cancer patients in local databases, but they only explored 
the predictive ef icacy between the Union International 
Contra Cancrum (UICC) TNM classi ication system and ANN. 
The prediction model comprised 14 features and lacked 
some important preoperative clinical blood features, which 
reduced the usefulness and reliability of the model in clinical 
practice.

In this study, we used 19 clinical characteristics (gender, 
age, Borrmann staging, degree of differentiation, depth of 
in iltration (T stage), number of lymph node metastases (N 
stage), pathological TNM stage, maximum tumor diameter, 
postoperative chemotherapy, Fibr, D-dimer, surgical 
approach, postoperative hospital stay, PNI, NLR, WBR, CEA, 
AFP, and CA199) to construct Cox-PH models and four 
machine learning models to predict the 3- and 5-year survival 
status of patients. Among the 19 factors, the correlation 
between Fibr and D-dimer preoperative blood indicators 
with survival outcomes of gastric cancer patients has been 
reported [26]. Borrmann staging, degree of differentiation, 
depth of in iltration (T-stage), and the number of lymph node 
metastases (N stage), pathological TNM stage, and maximum 
tumor diameter have been shown to affect the prognosis of 
AEG patients [27-30]. The three clinical indices of in iltration 
depth (T stage), number of lymph node metastases (N stage), 
and pathological TNM stage have a high degree of overlap. 
To prevent over itting of the machine learning model, 
two indices (in iltration depth and number of lymph node 
metastases) were excluded from the construction of the 
ive models. In the construction of the machine learning 

models, cross-validation was performed in the training 
set for hyperparameter tuning, and each model showed its 
predictive ef icacy. Combining the AUC values, calibration 
curves, and DCA curve performance of each model in the 

Figure 8: The AUC score forest plots and the calibration curves for survival 
prediction of the four ML models in the validation set. 

training and test set ROC curves, the XGBoost model exhibited 
the best performance with AUC values ≥ 0.80 in both the 
training and test sets. The Cox regression model also had a 
high predictive ef icacy, however, limitations of its algorithm 
and the loss of important clinical features prevented it from 
being comparable to XGBoost. Therefore, the developed 
XGBoost model has a high clinical utility and reliability.

Limitations of this study 

This was a single-center study with a small sample size. 
Machine learning models should be validated using large 
data sets to obtain more stable results [31]. The MLP in this 
study is a deep learning model, a subset of the ML model, an 
Arti icial Neural Network (ANN) with a high ability to learn 
simulation of nonlinear feature data. However, the MLP 
did not have a good predictive ability, probably because 
the variable features were not effectively extracted and the 
amount of data was small. Therefore, in follow-up studies, 
large multi-center data should be used for the training 
and external validation tests to develop a more reliable 
prediction model. Second, factors that may affect the long-
term prognosis of AEG patients, such as family history, 
smoking, and alcohol consumption, were not included in the 
19 clinical observations. More factors that may affect the 
long-term prognostic outcomes of AEG should be included 
in subsequent model optimizations to continuously improve 
the prediction model. At the same time, the Cox proportional 
risk model and the four machine learning models are based 
on completely different statistical bases, this study focuses 
on the results of the comparison, but the possible bias in the 
comparison process cannot be ignored. Finally, this study 
was developed and validated using retrospective data, and 
prospective validation studies should also be conducted to 
con irm the reliability of the model before formal clinical 
applications.

Conclusion
In conclusion, we constructed a Cox-PH model and a 

machine learning model for predicting survival risk after AEG 
from 19 clinicopathological features commonly observed 
in clinical work, with the XGBoost model showing the best 
ef icacy. This model provides an important reference for 
individualized prognostic assessment and postoperative 
treatment decisions of AEG.
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