
www.radiooncologyjournal.com 018https://doi.org/10.29328/journal.jro.1001042

Human osteosarcoma is the most common malignant 
bone tumor with an annual incidence of two cases per 
1 million population. Osteosarcoma account for 60% of all 
malignant bone tumors occurring in childhood, followed by 
Ewing’s sarcoma [1-3]. In adults, however, chondrosarcoma 
is the most common primary bone malignancy. The prognosis 
of skeletal tumors depends on their localization, histological 
typing, and the degree of metastasis. The therapeutical 
set-up is oriented toward these modalities and for 
osteosarcoma and Ewing sarcomas consists of preoperative, 
neoadjuvant chemotherapy, surgical tumor resection, and
postoperative, adjuvant chemotherapy. With current 
therapies, the recurrence-free overall 5 - year survival rate 
is approximately 60% [4-6]. In contrast, surgical resection 
is the treatment of choice for chondrosarcoma due to its 
phenotypic characteristics and resistance to chemotherapy 
and radiotherapy [7]. It is therefore important to look for 
new options for the treatment of osseous sarcomas. Due to 
its anti-oncological effect, one such option may be treated 
with physical plasma [8-10].

Non-Invasive Physical Plasma (NIPP) corresponds to a 
highly energized gas (≤ 40 °C) and is composed of numerous 
biologically active species (e.g. reactive oxygen species) 
[11-13]. In experimental approaches, treatment with NIPP 
leads to the inactivation of microorganisms and tumor cells. 
Previous research in the ϐield of oncological plasma therapy 
has shown signiϐicant growth inhibition and induction of 
apoptosis in cancer cells when treating osteosarcoma cell 
lines with NIPP [14]. Especially in cases of insufϐicient tumor 
resectability, the growth inhibitory effect of NIPP could 
represent a promising therapeutic option in the treatment of 
skeletal tumors.

Although already approved for the therapy of skin 
diseases for a long time [15], the ϐield of plasma oncology is 
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only now developing, which aims at introducing NIPP in the 
treatment of tumor diseases. The aim is to use the properties 
of NIPP to inactivate tumor cells in skeletal sarcomas [16-18].

In malignant cells of skeletal sarcomas such as 
osteosarcoma, Ewing’s sarcoma, and chondrosarcoma, 
mechanisms of intracellular signal transduction are 
triggered and lead to complex and usually long-lasting cell 
responses, e.g. programmed cell death [14,19-22]. At the 
cellular level, NIPP treatment generally led to the activation 
of redox signaling pathways (e.g. peroxiredoxins), which in 
turn induced p53-dependent apoptosis in skeletal sarcoma 
cells [12,19,20]. In osteosarcoma cells, NIPP-induced release 
of cytokines and interleukins also occurs [23]. As a result, a 
reduction in cell motility can be observed in osteosarcoma, 
Ewing’s sarcoma, and chondrosarcoma cells [14,19,20]. This 
would be of particular importance with regard to metastasis 
processes in tumor treatment. NIPP treatment has also 
been shown to increase the permeability of the cytoplasmic 
membrane of osteosarcoma cells [24]. This property could 
potentially be used to make chemoresistant tumor cells 
chemosensitive again by NIPP. Furthermore, NIPP also 
inhibits tumor-associated angiogenesis [25].

Recent studies have also shown that the speciϐic NIPP 
effects on osteosarcoma cells depend both on the skeletal 
sarcoma cell type to be treated and on the NIPP devices used 
[26]. In practical use, therefore, the speciϐic treatment time 
(the speciϐic “dose”) would ϐirst have to be determined and 
deϐined. Pharmacologic and radiation therapy can be based 
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on chemical-physical parameters deϐining a dose (e.g., mg/kg
body weight, total dose in Gy). Although reactive oxygen 
species are the main factors of biomedical NIPP efϐicacy, 
concentration data cannot be used for dosing. On the one 
hand, the identiϐication of reactive species as well as the 
determination of their concentrations is analytically complex 
and not feasible in a clinical context. On the other hand, 
reactive oxygen species are unstable and react or degrade 
within split seconds, so composition and concentration are 
constantly varying [11,13,27].

As a remedy, it has therefore become accepted to specify 
the duration of NIPP treatment to describe the dosage. This 
determines the biomedical effect. However, the efϐicacy is 
dependent on the NIPP device applied and the tissue treated. 
While skin and skin cells are comparatively robust to NIPP 
treatment, other tissues are much more sensitive. Even with 
cells from the same tissue but of different origins, e.g. tumor 
cells of the same malignancy but from different patients, 
signiϐicantly different sensitivities can be observed [28].

Furthermore, the efϐicacy and therefore the dosage also 
depends on the measured read-out. In the case of plasma 
oncology, the determination of cell growth has become 
established. Apoptotic or motility inhibitory effects can also 
be measured. If NIPP is used to promote wound healing, 
proliferation and cell motility are often determined. Here, the 
secretion of anti-inϐlammatory and regenerative cytokines 
and chemokines can also be measured [29].

An outstanding medical property of NIPP is its local 
and overall tissue-preserving effect on the treated organ 
areas. Cells are devitalized mainly by apoptotic mechanisms 
and consecutively replaced by neighboring healthy cells 
of the tissue. These processes lead to regeneration and 
repair processes that largely preserve the functionality 
of the treated tissue [29-32]. Furthermore, neither side 
effects nor treatment resistance that could limit NIPP use 
has been described so far. This also applies to the strong 
anti-inϐlammatory and antimicrobial properties of NIPP. 
Here, previous studies have also failed to demonstrate 
any adaptation or resistance effects [28,32-34]. Due to the 
chemically very reactive oxygen species, the ϐirst studies 
on NIPP technology already tested the extent to which DNA 
oxidation could lead to genotoxic effects. However, to date, a 
large number of studies with a wide variety of genotoxic tests 
have provided no evidence that NIPP can lead to mutations 
and genotoxicity [35-38]. Finally, current developments 
show that NIPP can be used at a very low cost. The initial cost 
is comparatively low, ranging from a few EUR 1,000 to a few 
EUR 10,000, depending on the manufacturer. The running 
costs are even negligible, since no reagents and, as a rule, no 
disposable components are used.

However, these undoubtedly advantageous features 
of NIPP therapy are offset by limitations. Unsatisfactory 
is the already discussed lack of a clearly deϐined dose 

for NIPP treatment. This complicates the replication and 
transferability of the therapeutical procedure. Furthermore, 
the low penetration depth and local effect on tissue may 
also be detrimental in some applications. It is therefore 
conceivable that NIPP should be combined with other 
procedures such as surgical or pharmacological interventions 
in future applications.

In summary, it can be said that the exposure of cancer 
cells to NIPP induces numerous cellular responses and leads 
to the induction of anti-oncogenic effects such as growth 
and motility inhibition, apoptosis, and changes in tumor-
environment interactions. For application in clinical oncology, 
the cellular and molecular characterization of these effects 
is essential. Plasma oncology opens up new possibilities for 
the treatment of skeletal sarcomas as well as for oncological 
surgery as a whole. As an additional intraoperative option, 
both the direct treatment of malignant tissue and the 
treatment of resection margins could become promising 
options in cancer surgery. The efϐicacy of NIPP treatment 
is not only limited to the inhibition of cell growth but also 
includes other pro-therapeutic effects such as microbial 
decontamination, immune stimulation, and promotion of 
wound healing and scar formation.
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