About Alexandrea

Alexandrea

Articles by Alexandrea

Using Mathematical Procedure to Compute the Attenuation Coefficient in Spectrometry Field

Published on: 6th February, 2017

OCLC Number/Unique Identifier: 7286351538

In gamma-ray spectrometry, the analysis of the environmental radioactivity samples (soil, sediment and ash of a living organism) needs to know the linear attenuation coefficient of the sample matrix. This coefficient is required to calculate the self-absorption correction factor through the sample bulk. In addition, these parameters are very important because the unidentified samples can be different in the composition and density from the reference liquid sources which are usually used for efficiency calibration in the radioactive monitoring process. The present work is essentially concerned to introduce a mathematical method to calculate the linear attenuation coefficient without using any collimator. This method was based mainly on the calculations of the effective solid angle subtended by the source-to-the detector configurations, the efficiency transfer technique and the average path lengths through the samples itself. The method can be used as a tool for the calculation of the linear attenuation coefficient of unidentified materials with good facility to use it in the calibration process of γ-ray detectors, particularly in the study of soil samples. The results are compared with the data from NIST-XCOM to show how much the results are in close agreement and to give the validity of the approach.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Empirical formulae for calculating γ-ray detectors effective solid angle ratio

Published on: 27th January, 2017

Determination of the detector efficiency using volumetric cylindrical sources is very important in various scientific and industrial fields, especially in the field of quantitative analysis. To calculate the absolute activity of any sample, the full-energy peak efficiency (FEPE) of the detector is needed. By applying the efficiency transfer method, the FEPE of the detector would be determined easily without using the standard sources. This approach depends on two main factors. The first one, is the reference efficiency of the reference source, which is determined experimentally, and the second one, is the calculation of the effective solid angle ratio between the sample and the reference source geometries. This work introduces an empirical formula for calculating the second factor for using two different sizes of NaI(Tl) detectors. The validity of this empirical formula was successfully demonstrated by comparing the calculating values with the experimental values.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?