Investigation of radiation attenuation parameters of some drugs used in Chemotherapy in Wide Energy Region

Main Article Content

Ferdi Akman
Mustafa Recep Kaçal

Abstract

Objectives: The aim of this study is to compute the radiation attenuation parameters such as mass attenuation coefficient, linear attenuation coefficient, half value layer, mean free path, and effective atomic number for some selected chemotherapy drugs such as Lomustine, Cisplatin, Carmustine, and Chlorambucil in the energy range from 1 keV to 100 GeV.


Materials and Methods: The mass attenuation coefficients were calculated with the help of WinXCOM program. Using the obtained mass attenuation coefficients, other parameters such as linear attenuation coefficient, half value layer, mean free path, and effective atomic number were derived.


Results: It is observed that the variations of these parameters with respect to the photon energy show changes in different energy regions. According to the obtained results, Cisplatin has the highest mass attenuation coefficient, linear attenuation coefficient and effective atomic number results among the selected chemotherapy drugs. Moreover, Chlorambucil has the highest half value layer and mean free path results among the selected chemotherapy drugs.


Conclusion: The results of this study are useful for applied science fields such as radiation physics, pharmacology, and medical physics. These results may be useful when the selected chemotherapy drugs are used together with radiology.

Article Details

Akman, F., & Kaçal, M. R. (2018). Investigation of radiation attenuation parameters of some drugs used in Chemotherapy in Wide Energy Region. Journal of Radiology and Oncology, 2(2), 047–052. https://doi.org/10.29328/journal.jro.1001021
Review Articles

Copyright (c) 2018 Akman F, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

National Institutes of Health, 2012.

Weiss RB, Issell BF. The nitrosoureas: carmustine (BCNU) and lomustine (CCNU). Cancer Treat Rev. 1982; 9: 313-330. Ref.: https://tinyurl.com/y8qdebfs

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014; 740: 364-378. Ref.: https://tinyurl.com/ycxfuo7r

Bodnar EN, Dikiy MP, Medvedeva EP. Photonuclear production and antitumor effect of radioactive cisplatin (195mPt). J Radionan Nucl Ch. 2015; 305: 133-138. Ref.: https://tinyurl.com/ycwcen5h

Akman F, Durak R, Kacal MR, Bezgin F. Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrom. 2016; 45: 103-110. Ref.: https://tinyurl.com/yapxhshz

Akman F, Durak R, Turhan MF, Kacal MR. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl Radiat Isotopes. 2015; 101: 107-113. Ref.: https://tinyurl.com/yba3c4bx

Sayyed MI. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J Alloy Compd. 2017; 695: 3191-3197. Ref.: https://tinyurl.com/yaehr6zn

Akman F, Durak R, Kacal MR. Determination of K shell absorption parameters for some lanthanides using the X-ray attenuation method. Can J Phys. 2015; 93: 1532-1540. Ref.: https://tinyurl.com/yctgdyjp

Kaçal MR, Karataş HA, Akman F. Photon absorption characteristics of some selected enzyme inhibitors used in cancer research in the energy range 1 keV-100 GeV. J Radiol Oncol. 2017; 1: 60-68. Ref.: https://tinyurl.com/yd36ejhb

Akman F, Kaçal MR, Akman F, Soylu MS. Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can J Phys. 2017; 95: 1005-1011. Ref.: https://tinyurl.com/y9y32rjm

Akman F, Kaçal MR, Durak R. Chemical effect on the K shell absorption parameters of some selected cerium compounds. J Instrum. 2016; 11: P08006. Ref.: https://tinyurl.com/ybmuet9x

Kacal MR, Han I, Akman F. Measurement of mass attenuation coefficients by Si (Li), NaI (Tl), and Cd (Tl) detectors. Nuclear Science and Technology. 2012: 59-69. Ref.: https://tinyurl.com/y7u2qgx2

Sayyed MI, Issa SAM, Auda SH. Assessment of radio-protective properties of some anti-inflammatory drugs. Prog Nucl Energ. 2017; 100: 297-308. Ref.: https://tinyurl.com/ycfc6s9y

Akman F, Geçibesler IH, Sayyed MI, Tijani SA, Tufekci AR, et al. Determination of some useful radiation interaction parameters for waste foods. Nucl Eng Technol. 2018; 50: 944-949. Ref.: https://tinyurl.com/ybtqtw2z

Akman F, Geçibesler İH, Demirkol İ, Çetin A. Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Can J Phys. Ref.: https://tinyurl.com/y7w8sgny

Gerward L, Guilbert N, Jensen KB, Levring H. X-ray absorption in matter: Reengineering XCOM. Radiat Phys Chem. 2001; 60: 23-24. Ref.: https://tinyurl.com/y8v5yhz3

Kavaz E, Ahmadishadbad N, Özdemir Y. Photon buildup factors of some chemotherapy drugs. Biomed Pharmacother. 2015; 69: 34-41. Ref.: https://tinyurl.com/y7858kgj